SYNTHESIS AND BIOLOGICAL ACTIVITY OF ANALOGUES OF DIAZAQUINOMYCIN A, A NEW THYMIDYLATE SYNTHASE INHIBITOR

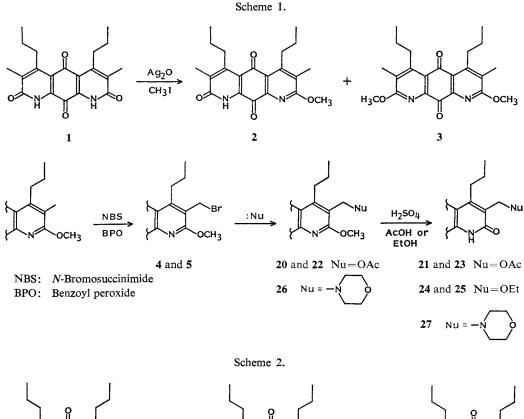
Kazuo Tsuzuki, Tadao Yokozuka, Masatsune Murata,[†] Haruo Tanaka and Satoshi Ōmura

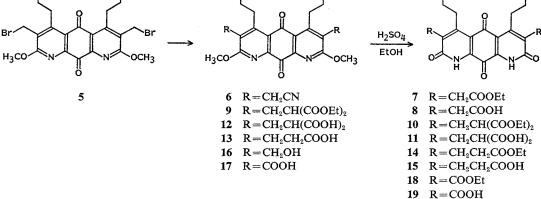
The Kitasato Institute, and School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo 108, Japan

(Received for publications September 2, 1988)

Diazaquinomycin A (1), a new thymidylate (TMP) synthase inhibitor, is poorly soluble in various solvents and exhibits no antitumor activity, while a series of the analogues prepared from 1 are more soluble in water and chloroform than 1, and some of them exhibit antitumor activity in mice. Some analogues in which the lactam rings are replaced by pyridine rings did not inhibit TMP synthase. The diethoxy analogue 25 is a 10-fold more potent inhibitor of TMP synthase than 1. The diacetoxy analogue 23 exhibits significant antitumor activity (T/C: 175%) against Meth-A fibrosarcoma in mice.

Diazaquinomycin A (1), possessing an unique 1,8-diazaanthraquinone skeleton, is a new antibiotic found as a folic acid antagonist by a screening method established for inhibitors of folate metabolism.¹⁻⁴⁾ Recently, some of the present authors have shown that 1 inhibits thymidylate (TMP) synthase competitively with 5,10-methylenetetrahydrofolate and exhibits effective cytotoxicity against tumor cells, but has no *in vivo* effect on tumors in mice, probably because of its extremely low solubility. In fact, solid residues of 1 were observed when mice were dissected after a suspension of 1 in 0.5% gum arabic was administered intraperitoneally.

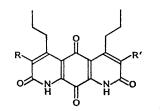

This paper describes the synthesis of diazaquinomycin analogues with the aim to improve the solubility of 1 and to evaluate their *in vitro* and *in vivo* activities, including antitumor activity.

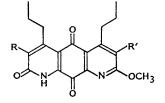

Chemical modification of 1 is limited by its very low solubility in organic and aqueous media. However, conversion of the lactam rings of 1, which are necessary for manifestation of biological activity, to 2-methoxypyridine rings improved the solubility in organic solvents and served to activate the methyl groups, which could then be brominated. Nucleophilic substitution of the aryl bromide by several nucleophiles provided a versatile method to introduce polar groups onto the methyl groups of 1. Thereafter, acidic treatment reconstituted the 2-oxopyridine rings.

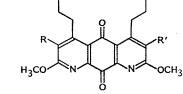
Chemistry

1 was treated with methyl iodide and silver oxide in chloroform to give the imino ether 2 possessing one 2-methoxypyridine and one lactam ring. Refluxing the reaction mixture afforded 3. Bromination of the two imino ethers gave 4 and 5. Substituting the bromides by a series of nucleophiles such as cyanide, malonate anion, water, acetic acid, ethanol and morpholine, and then hydrolyzing the imino ethers with H_2SO_4 - EtOH gave the diazaquinomycin analogues as shown in Scheme 1.

[†] Present address: Department of Nutrition and Food Science, Ochanomizu University, Otsuka, Bunkyoku, Tokyo 112, Japan.






Cyanation of the dibromide 5 with tetraethylammonium cyanide⁵⁾ gave the dicyanide 6.⁶⁾ The cyano groups were converted to ethyl esters with H_2SO_4 - EtOH and at the same time the imino ethers were hydrolyzed to give the ester 7. Substitution of 5 by ethyl malonate anion gave the ester 9, and subsequent hydrolysis with H_2SO_4 - EtOH gave the dimalonate ester 10. Successive treatments of 9, such as hydrolysis of the esters with NaOH - aq EtOH, decarboxylation in pyridine and hydrolysis of the imino ethers with H_2SO_4 - EtOH gave the ester 14. Hydrolysis of the dibromide 5 with water and THF at reflux without acid and base gave the diol 16. The hydroxyl groups were oxidized with $CrO_3 - H_2SO_4$ leading to the dicarboxylic acid 17. Further treatment of 17 with H_2SO_4 - EtOH afforded the ester 18. Hydrolysis with NaOH - aq EtOH gave the corresponding carboxylic acids as shown in Scheme 2.

THE JOURNAL OF ANTIBIOTICS

Table 1. In vitro activities and solubilities of diazaquinomycin A analogues.

Туре І

Type II

Type III

					Solubility				
Compound	Туре	R	R′	Enterococc	us faecium	HeLa	TMP	(µg/ml)	
	•1			MIC (µg/ml)	Reversal with TdR	- cells MIC (µg/ml)	synthase ^a IC ₅₀ (µg/ml)	CHCl ₃	H ₂ O
1	I	CH₃	CH ₃	1.0~2.0	++	0.16~0.31	4.2	640	0.15
2	II	CH ₃	CH_3	>500		>5	> 20		
3	III	CH_3	CH_3	>500		2.5	> 20		
6	III	CH ₂ CN	CH ₂ CN	>500		1.25	> 20		
7	Ι	CH ₂ COOEt	CH ₂ COOEt	3.9	+	0.31	1.1	5,980	1.8
8	I	CH ₂ COOH	CH ₂ COOH	> 500		>5	1.5		
10	I	CH ₂ CH(COOEt) ₂	CH ₂ CH(COOEt) ₂	62.5	+-	2.5	1.6	4,360	0.62
11	Ι	CH ₂ CH(COOH) ₂	CH ₂ CH(COOH) ₂	>500		5	1.3		
14	I	CH ₂ CH ₂ COOEt	CH ₂ CH ₂ COOEt	3.9	+	1.25	2.1		
15	I	CH ₂ CH ₂ COOH	CH ₂ CH ₂ COOH	>500		5	3.4		
18	Ι	COOEt	COOEt	250		5	1.0		
19	Ι	СООН	COOH	>500		>5	2.4		
21	Ι	CH3	CH ₂ OAc	2.0	+	0.63	2.0		
22	III	CH ₂ OAc	CH ₂ OAc	>500		2.5	> 20		
23	I	CH ₂ OAc	CH ₂ OAc	3.9	±	0.31	1.0	3,180	0.51
24	Ι	CH ₃	CH ₂ OEt	1.0	++	0.31	0.7		
25	Ι	CH ₂ OEt	CH ₂ OEt	1.0	++	0.16	0.4	3,500	0.22
27	Ι	CH2NO	CH2NO	>500		>5	1.0		

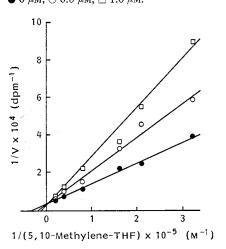
^a Prepared from Ehrlich ascites carcinoma cells.

++: Well reversed, +: moderately reversed, \pm : weakly reversed.

Treatment of the monobromide 4 and the dibromide 5 with sodium acetate and acetic acid gave the acetates 20 and 22, which were converted to the monoacetate 21 and the diacetate 23, respectively, with H_2SO_4 - AcOH.

Alcoholysis of 4 and 5 with H_2SO_4 - EtOH gave the ethyl ethers 24 and 25, respectively, accompanied by hydrolysis of the imino ether. Reaction of 5 with morpholine and a following hydrolysis of the imino ether gave the diamine 27.

Results and Discussion


Table 1 summarizes the antimicrobial activities of the synthesized analogues of 1 against the folate requiring *Enterococcus faecium*, their reversal by thymidine (TdR), the cytotoxicities against HeLa cells, the inhibitory activities against TMP synthase prepared from Ehrlich ascites carcinoma cells, and the solubilities in water and chloroform.

All mono- or dimethylated analogues of 1 (Types II and III) exhibited extremely reduced biological activities. The carboxylic acid analogues (8, 11, 15 and 19) were devoid of activities against *E. faecium* and HeLa cells, but the corresponding esters (7, 10, 14 and 18) were active. Both the carboxylic acids and their esters, however, were more potent inhibitors of TMP synthase than 1. These results suggest that the carboxylic acids cannot penetrate the cell membrane. 18 exhibited poor activity against *E. faecium*, but 7 and 14 both containing longer side chains exhibited similar activities against *E. faecium* as did 1. 7 was most cytotoxic.

Compounds 21 and 24, which have substituents on one of the two methyl groups of 1, were only half as potent as 23 and 25, which have the corresponding substituents on both methyl groups of 1. All analogues containing two lactam rings (Type I) were more potent inhibitors of TMP synthase

Fig. 1.	Mode of	inhib	itory a	ction	of	25	against	
TMP	synthase	from	Ehrlic	h asci	tes	ca	rcinoma	
cells								

● 0 µм, ⊖ 0.8 µм, □ 1.6 µм.

Table 2.	Antitumor activities of diazaquinomycin A
analogu	es on Meth-A fibrosarcoma.

Compound	Dose (mg/kg/ day×days)	Mean survival days	T/C (%)
1	1×4	12.0	96
	10×4	12.0	96
	100×4	11.5	92
7	1×4	12.3	100
	10×4	12.4	101
	100×4	$14.3 {\pm} 0.75$	116
23	1×4	12.2	99
	10×4	17.3 ± 2.56	141*
	100×4	21.5 ± 2.06	175*
25	1×4	12.1	98
	10×4	11.8	96
	100×4	12.5	102
5-FU	20×1	17.5	142
Control	<u> </u>	12.3 ± 0.95	100

The results of Lineweaver-Burk plot showed that it inhibits the enzyme competitively with the substrate 5,10-methylene-THF. With the enzyme, Km was 45 μ M, and Ki was 14 μ M.

* P<0.05.

5-FU: 5-Fluorouracil.

VOL. XLII NO. 5 THE JOURNAL OF ANTIBIOTICS

than 1. Among them, 25 was the most potent inhibitor of TMP synthase and inhibited the enzyme competitively with 5,10-methylene-THF as substrate (Fig. 1). The inhibitory activity of 25 was 10-fold stronger than that of 1.

Among the synthesized analogues, three compounds (7, 23 and 25) exhibited activities against HeLa cells similar to those of 1, and were more soluble in water and chloroform than 1. Their antitumor activities against Meth-A fibrosarcoma in mice were examined and the results are summarized in Table 2. The diacetoxy derivative 23 exhibited significant antitumor activity (T/C: 175%) corresponding to that of 5-fluorouracil (5-FU).

Experimental

MP's were determined on a micro melting point apparatus (Yanaco MP-3). They were uncorrected. NMR spectra were run in $CDCl_3$ or MeOH- d_4 on a 90 MHz spectrometer (Jeol FX-90Q). IR spectra were taken on a Jasco A-102 spectrometer. MS were determined by high-resolution electron impact mass spectrometer (JMS-DX300, JMA-3100). Elemental analysis for carbon, hydrogen and nitrogen were determined with a Perkin-Elmer Model 240 elemental analyzer. Column chromatography was performed on Silica gel 60 (Art. No. 7734, Merck).

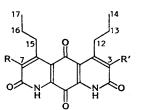
2-Methoxy-3,7-dimethyl-4,6-dipropylpyrido[3,2-g]quinoline-5,8,10(9H)-trione (2)

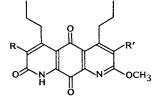
A solution of diazaquinomycin A (1) (203 mg, 0.57 mmol), methyl iodide (4 ml, 64.2 mmol) and silver oxide (398 mg, 1.72 mmol) in CHCl₃ (20 ml) was stirred for 20 hours at room temperature. The mixture was filtered and the filtrate was evaporated. The resulting crude product was purified by column chromatography, eluting with CHCl₃. An orange crystalline solid was obtained, 151 mg (72%): MP 288~289°C; NMR Table 3; IR (CHCl₃) cm⁻¹ 3350, 2960, 1645; MS calcd for $C_{21}H_{24}N_2O_4$ 368.174, observed 368.174.

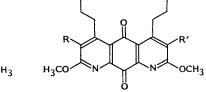
2,8-Dimethoxy-3,7-dimethyl-4,6-dipropylpyrido[3,2-g]quinoline-5,10-dione (3)

A suspension of 1 (250 mg, 0.71 mmol), methyl iodide (5 ml, 80.3 mmol) and silver oxide (500 mg, 2.16 mmol) in CHCl₃ (25 ml) was heated at reflux for 2 hours. As described for 2, the mixture was treated and purified to give a yellow crystalline solid, 235 mg (87%): MP 136~138°C; NMR Table 3; IR (CHCl₃) cm⁻¹ 2970, 2880, 1695, 1655; MS calcd for C₂₂H₂₈N₂O₄, 382.189, observed 382.189.

3-Bromomethyl-2-methoxy-7-methyl-4,6-dipropylpyrido[3,2-g]quinoline-5,8,10(9H)-trione (4)


A solution of 2 (242 mg, 0.66 mmol), N-bromosuccinimide (242 mg, 1.36 mmol) and benzoyl peroxide (20 mg, 0.08 mmol) in CCl₄ (93 ml) was heated at reflux for 1 hour. The mixture was cooled at 0°C and filtered. The solids were suspended in CCl₄ and kept at 50°C for 30 minutes. The suspension was filtered, and the solids were dissolved in CHCl₃ (100 ml). The solution was washed with water (100 ml) and dried over anhydrous Na₂SO₄. After filtration the solvent was removed to yield a yellow crystalline solid, 224 mg (76%): MP 248~250°C; NMR Table 3; IR (CHCl₃) cm⁻¹ 3350, 2960, 2925, 1655, 1600; MS calcd for C₂₁H₂₃BrN₂O₄, 446.084, observed 446.082.


3,7-Dibromomethyl-2,8-dimethoxy-4,6-dipropylpyrido[3,2-g]quinoline-5,10-dione (5)


A solution of 3 (500 mg, 1.31 mmol), N-bromosuccinimide (700 mg, 3.93 mmol) and benzoyl peroxide (10 mg, 0.04 mmol) in CCl₄ (40 ml) was heated at reflux for 2.5 hours. To the mixture was added water (40 ml) and the product was extracted with CHCl₃ (3×40 ml). The combined organic extracts were dried (Na₂SO₄) and evaporated. The resulting crude product was purified by column chromatography, eluting with CHCl₃. A yellow crystalline solid was obtained 520 mg (74%): MP 226~227°C; NMR Table 3; IR (CHCl₃) cm⁻¹ 2975, 1730, 1700, 1670, 1585; MS calcd for C₂₂H₂₄Br₂N₂O₄, 538.010, observed 538.007.

2,8-Dimethoxy-4,6-dipropyl-5,10-dioxo-5,10-dihydropyrido[3,2-g]quinoline-3,7-diacetonitrile (6)

To a solution of 5 (500 mg, 0.93 mmol) in CH_2Cl_2 (50 ml) was added dropwise a solution of tetraethylammonium cyanide (289 mg, 1.85 mmol) in CH_2Cl_2 (50 ml) at 0°C in 4 hours. In a similar

туре III

Туре І

туре II

.

Com- pound	Туре	R	R′	12-H, 15-H	13-H, 16-H	14 - H, 17-H	OCH ₃	Other
2	II	CH ₃	CH ₃	3.07 t	1.59 m	1.10 t	4.13 s	2.27 s (3-CH ₃), 2.30 s (7-CH ₃)
3	III	CH ₃	CH_3	3.09 t	1.57 m	1.09 t	4.15 s	2.28 s (3,7-CH ₃)
4	II	CH_3	CH ₂ Br	2.69 t	1.59 m	1.17 t	4.14 s	$2.31 \text{ s} (7-\text{CH}_3), 4.60 \text{ s} (3-\text{CH}_2)$
5	III	CH ₂ Br	CH ₂ Br	3.20 t	1.69 m	1.16 t	4.22 s	4.62 s (3,7-CH ₂)
6	III	CH_2CN	CH_2CN	3.17 t	1.64 m	1.15 t	4.24 s	3.82 s (3,7-CH ₂)
7	I	CH ₂ COOEt	CH ₂ COOEt	3.00 t	1.54 m	1.08 t		1.27 t (COOCH ₂ CH ₃), 3.78 s (3,7-CH ₂), 4.19 q (COOCH ₂ CH ₃)
8	I	CH ₂ COOH	CH ₂ COOH	2.96 t	1.30 m	1.00 t		$3.60 \text{ s} (3,7\text{-}CH_2)$
9	ш	CH ₂ CH(COOEt) ₂	CH ₂ CH(COOEt) ₂	3.15 t	1.55 m	1.08 t	4.15 s	1.21 t (CH(COOCH ₂ CH ₃) ₂), 3.34 d (3,7-CH ₂), 3.38 t (CH(COOCH ₂ CH ₃) ₂), 4.15 q (CH(COOCH ₂ CH ₃) ₂)
10	I	CH ₂ CH(COOEt) ₂	CH ₂ CH(COOEt) ₂	3.07 t	1.50 m	1.16 t		1.24 t (CH(COOCH ₂ CH ₃) ₂), 3.29 d (3,7-CH ₂), 4.18 q (CH(COOCH ₂ CH ₃) ₂)

Table 3. ¹H NMR parameters (δ) for diazaquinomycin A analogues.^a

12 13 14	III III I	CH ₂ CH(COOH) ₂ CH ₂ CH ₂ COOH CH ₂ CH ₂ COOEt	CH ₂ CH(COOH) ₂ CH ₂ CH ₂ COOH CH ₂ CH ₂ COOEt	3.28 t 3.08 t 3.06 t	1.50 m 1.55 m 1.51 m	1.09 t 1.05 t 1.11 t	4.14 s 4.16 s	3.40 d (3,7-CH ₂), 3.70 t (C <i>H</i> (COOH) ₂) 2.60 t (C <i>H</i> ₂ COOH), 3.08 t (3,7-CH ₂) 1.27 t (CH ₂ COOCH ₂ C <i>H</i> ₃), 2.61 t (C <i>H</i> ₂ COOCH ₂ CH ₃), 3.06 t (3,7-CH ₂), 4.15 g (CH ₂ COOC <i>H</i> ₂ CH ₃)
16	III	CH₂OH	CH₂OH	3.13 t	1.61 m	1.08 t	4.18 s	$4.79 \text{ s} (3,7-\text{CH}_2)$
17	ш	COOH	СООН	3.11 t	1.65 m	1.06 t	4.16 s	
18	I	COOEt	COOEt	2.91 t	1.60 m	1.06 t		$1.20 t (COOCH_2CH_3), 4.40 q (COOCH_2CH_3)$
20	п	CH_3	CH ₂ OAc	3.10 t	1.59 m	1.10 t	4.14 s	2.09 s (7-CH ₃), 2.29 s (COCH ₃), 5.23 s (3-CH ₂)
21	1	CH ₃	CH ₂ OAc	3.02 t	1.57 m	1.10 t		1.26 t (COCH ₃), 2.29 s (7-CH ₃), 5.21 s (3-CH ₂)
22	III	CH ₂ OAc	CH ₂ OAc	3.17 t	1.55 m	1.11 t	4.24 s	2.10 s (COCH ₃), 5.28 s (3,7-CH ₂)
23	I	CH ₂ OAc	CH ₂ OAc	3.11 t	1.60 m	1.17 t		2.08 s (COCH ₃), 5.22 s (3,7-CH ₂)
24	I	CH_3	CH ₂ OEt	3.15 t	1.60 m	1.11 t		1.25 t (OCH ₂ CH ₃), $2.28 s$ (7-CH ₃),
								3.62 q (OCH ₂ CH ₃), $4.58 s$ (3-CH ₂)
25	I	CH ₂ OEt	CH ₂ OEt	3.15 t	1.65 m	1.10 t		$1.24 t (OCH_2CH_3), 3.63 q (OCH_2CH_3),$
			<u> </u>					4.95 s (3,7-CH ₂)
26	III	сн ₂ й ò	сн ₂ ң́ Ò	3.34 t	1.59 m	1.11 t	4.13 s	2.48 t (NC H_2 C H_2 O), 3.60 s (3,7-C H_2),
		-						$3.65 t (NCH_2CH_2O)$
27	I	сн ₂ м о	сн ₂ ң́ ò	3.18 t	1.75 m	1.10 t		2.55 t (NC H_2 CH $_2$ O), 3.65 s (3,7-CH $_2$),
			\smile					$3.70 t (NCH_2CH_2O)$

^a NMR spectra were run in CDCl₃ (compound 8; MeOH-d₄) on a 90 MHz spectrometer.

Field strengths are expressed in units of δ (ppm).

manner to the preparation of 5, the mixture was treated and purified to give a yellow crystalline solid, 306 mg (87%): MP 190~193°C; NMR Table 3; IR (CHCl₃) cm⁻¹ 2955, 1700, 1665, 1585; MS calcd for $C_{24}H_{24}N_4O_4$ 432.180, observed 432.180.

4,6-Dipropyl-2,5,8,10-tetraoxo-1,2,5,8,9,10-hexahydropyrido[3,2-g]quinoline-3,7-diethyl Diacetate
(7)

A solution of 6 (52 mg, 0.12 mmol) in 30% H_2SO_4 - EtOH (6 ml) was heated at reflux for 2 hours. To the mixture was added water (5 ml) and the product was extracted with CHCl₃ (3×5 ml). The combined organic extracts were dried (Na₂SO₄) and evaporated. The resulting crude product was purified by column chromatography on silica gel, eluting with CHCl₃ - MeOH (50:1). A red crystalline solid was obtained, 33 mg (55%): MP 267~268°C; NMR Table 3; IR (CHCl₃) cm⁻¹ 3360, 1735, 1660; MS calcd for C₂₈H₃₉N₂O₈, 498.200, observed 498.201.

4,6-Dipropyl-2,5,8,10-tetraoxo-1,2,5,8,9,10-hexahydropyrido[3,2-g]quinoline-3,7-diacetic Acid (8)

To a solution of 7 (30 mg, 0.06 mmol) in 80% EtOH - H_2O (12 ml) was added NaOH (30 mg, 0.75 mmol) and the mixture was stirred at 50°C for 30 minutes. After the mixture was acidified with 1 N HCl, the precipitate was filtered and the solid was washed with water (12 ml). This solid was dried *in vacuo* to give a red crystalline solid, 21 mg (82%): MP 300°C; NMR Table 3; IR (CHCl₃) cm⁻¹ 3600~2500, 2975, 2945, 2880, 1710, 1645; field desorption (FD)-MS m/z 443 (M⁺+1).

Anal Calcd for $C_{22}H_{22}N_2O_3$: C 59.73, H 4.98, N 6.33.

Found: C 59.55, H 4.78, N 6.03.

<u>2,8-Dimethoxy-3,7-dimethyl-4,6-dipropyl-5,10-dioxo-5,10-dihydropyrido[3,2-g]quinoline-3',7'-</u> dimalonic Acid Tetraethyl Ester (9)

To a suspension of sodium hydride (60% in oil) (388 mg, 16.2 mmol) in dry THF (100 ml) was added dropwise diethyl malonate (1.8 ml, 11.8 mmol), and the reaction mixture was stirred for 0.5 hour to prepare the anion of diethyl malonate. To the mixture was added a solution of 5 (1.5 g, 2.79 mmol) in dry THF (60 ml), and the resulting solution was stirred for 0.5 hour at room temperature. To the mixture was added EtOH (0.5 ml) to quench the reaction. After concentration *in vacuo*, water (60 ml) was added to the residue. The mixture was acidified with 1 N HCl, and extracted with CHCl₃ (3×60 ml). The combined extracts were dried (Na₂SO₄) and concentrated *in vacuo*. The resulting crude product was purified by column chromatography on silica gel, eluting with CHCl₃. A yellow crystalline solid was obtained, 1.3 g (74%): MP 97~100°C; NMR Table 3; IR (CHCl₃) cm⁻¹ 3010, 1740, 1705, 1675, 1595; MS calcd for C₃₆H₄₆N₂O₁₂, 698.305, observed 698.307.

<u>3,7-Dimethyl-4,6-dipropyl-2,5,8,10-tetraoxo-1,2,5,8,9,10-hexahydropyrido[3,2-g]quinoline-3',7'-</u> dimalonic Acid Tetraethyl Ester (10)

A solution of **9** (100 mg, 0.14 mmol) in 30% H_2SO_4 - EtOH (30 ml) was heated at reflux for 12 hours. The mixture was cooled, and concentrated *in vacuo*. To the mixture was added water (5 ml), and the product was extracted with CHCl₃. The organic phase was dried (Na₂SO₄) and concentrated *in vacuo*. The resulting crude product was purified by column chromatography on silica gel, eluting with CHCl₃ - MeOH (10:1). A red crystalline solid was obtained, 91 mg (95%): MP 89~92°C; NMR Table 3; IR (CHCl₃) cm⁻¹ 3350, 2975, 1725, 1655; MS calcd for C₃₄H₄₂N₂O₁₂, 670.274, observed 670.274.

2,8-Dimethoxy-3,7-dimethyl-4,6-dipropyl-5,10-dioxo-5,10-dihydropyrido[3,2-g]quinoline-3',7'dimalonic Acid (12)

A mixture of 9 (50 mg, 0.07 mmol) in 80% EtOH - H_2O (15 ml) was treated with NaOH (30 mg, 0.75 mmol) and the mixture was heated at reflux for 1 hour. The mixture was acidified with 1 N HCl, and H_2O (15 ml) was added. After extracting with CHCl₃, the organic phase was dried (Na₂SO₄) and concentrated *in vacuo*. A yellow crystalline solid was obtained 34 mg (82%): MP 300°C; NMR Table 3; IR (KBr) cm⁻¹ 3700~2500, 2975, 1710, 1670, 1585; FD-MS *m/z* 587 (M⁺+1).

Anal Calcd for $C_{28}H_{30}N_2O_{12}$: C 57.34, H 5.12, N 4.78.

Found: C 57.18, H 5.03, N 5.01.

VOL. XLII NO. 5

2,8-Dimethoxy-4,6-dipropyl-5,10-dioxo-5,10-dihydropyrido[3,2-g]quinoline-3,7-propionic Acid (13)

A solution of 12 (50 mg, 0.09 mmol) in pyridine (10 ml) was heated at reflux for 4 hours. The mixture was concentrated *in vacuo*, and acidified with 1 N HCl. After extracting with CHCl₃, the organic phase was dried (Na₂SO₄) and concentrated *in vacuo*. The resulting crude product was purified by column chromatography on silica gel, eluting with CHCl₃. A yellow crystalline solid was obtained, 34 mg (94%): MP 253~255°C; NMR Table 3; IR (CHCl₃) cm⁻¹ 3600~2500, 2960, 1705, 1665, 1585; MS calcd for $C_{26}H_{30}N_2O_8$, 498.200, observed 498.201.

4,6-Dipropyl-2,5,8,10-tetraoxo-1,2,5,8,9,10-hexahydropyrido[3,2-g]quinoline-3,7-dipropionic Acid Diethyl Ester (14)

A solution of 13 (34 mg, 0.07 mmol) in 30% H_2SO_4 - EtOH (15 ml) was heated at reflux for 4 hours. After the reaction was complete according to TLC analysis, in a similar manner to the preparation of 5, the mixture was treated and purified to give a red crystalline solid, 19 mg (53%): MP 175~177°C; NMR Table 3; IR (CHCl₃) cm⁻¹ 3355, 2975, 1730, 1650; MS calcd for C₂₈H₃₄N₂O₃, 526.232, observed 526.232.

3,7-Dihydroxymethyl-2,8-dimethoxy-4,6-dipropylpyrido[3,2-g]quinoline-5,10-dione (16)

A solution of 5 (80 mg, 0.15 mmol) in 33% THF - H_2O (15 ml) was heated at reflux for 2 days. The mixture was concentrated *in vacuo*, and water (30 ml) was added. After extracting with CHCl₃, the organic phase was dried (Na_2SO_4) and concentrated *in vacuo*. The resulting crude product was purified by column chromatography on silica gel, eluting with CHCl₃ - MeOH (20:1). A yellow crystalline solid was obtained, 27 mg (44%): MP 230~235°C; NMR Table 3; IR (CHCl₃) cm⁻¹ 3400, 2955, 1700, 1670, 1585; MS calcd for $C_{22}H_{28}N_2O_6$, 414.179, observed 414.179.

2,8-Dimethoxy-4,6-dipropyl-5,10-dioxo-5,10-dihydropyrido[3,2-g]quinoline-3,7-dicarboxylic Acid (17)

To a solution of 16 (550 mg, 1.33 mmol) in acetone (50 ml) was added a solution of $\text{CrO}_3 - \text{H}_2\text{SO}_4$ in acetone and the resulting mixture was stirred at 0°C for 10 minutes. To the mixture was added 2-propanol and the mixture was concentrated *in vacuo*. Further water (150 ml) was added and the product was extracted with CHCl₈. The organic phase was dried (Na₂SO₄), and concentrated *in vacuo*. A yellow crystalline solid was obtained, 510 mg (87%): MP 231~235°C; NMR Table 3; IR (CHCl₃) cm⁻¹ 3600~2500, 2980, 1745, 1710, 1670, 1585; MS calcd for C₂₂H₂₂N₂O₈, 442.138, observed 442.138.

4,6-Dipropyl-2,5,8,10-tetraoxo-1,2,5,8,9,10-hexahydropyrido[3,2-g]quinoline-3,7-dicarboxylic Acid Diethyl Ester (18)

A solution of 17 (210 mg, 0.48 mmol) in 30% H₂SO₄ - EtOH (30 ml) was heated at reflux for 5 hours. The mixture was concentrated *in vacuo*, and water (20 ml) was added. After extracting with CHCl₃, the organic phase was dried (Na₂SO₄) and concentrated *in vacuo*. The resulting crude product was purified by column chromatography on silica gel, eluting with CHCl₃ - MeOH (25:1). A red crystalline solid was obtained, 53 mg (50%): MP 230~233°C; NMR Table 3; IR (CHCl₃) cm⁻¹ 3350, 2975, 1735, 1650; MS calcd for C₂₄H₂₆N₂O₆, 470.169, observed 470.172.

3-Acetoxymethyl-2-methoxy-7-methyl-4,6-dipropylpyrido[3,2-g]quinoline-5,8,10(9H)-trione (20)

To a solution of 4 (114 mg, 0.26 mmol) in acetic acid (10 ml) was added NaOH (30 mg, 0.75 mmol) and the resulting mixture was stirred at 100°C for 5 hours. After concentration *in vacuo*, to the residue was added water (10 ml) and the product was extracted with CHCl₃. The organic phase was dried (Na₂SO₄) and concentrated *in vacuo*. The resulting crude product was purified by column chromatography on silica gel, eluting with CHCl₃ - MeOH (25:1). An orange crystalline solid was obtained, 104 mg (96%): MP 188~190°C; NMR Table 3; IR (CHCl₃) cm⁻¹ 3350, 2945, 1740, 1655, 1575; MS calcd for $C_{23}H_{26}N_2O_6$, 426.179, observed 426.179.

3-Acetoxymethyl-7-methyl-4,6-dipropylpyrido[3,2-g]quinoline-2,5,8,10(1H,9H)-tetrone (21) To a solution of 20 in acetic acid (10 ml) was added conc H₂SO₄ (1 ml), and the resulting solution was heated at reflux for 5 hours. To the mixture was added water (10 ml), and the product was extracted with CHCl₃. After extraction, in a similar manner to the preparation of 5, the mixture was treated and purified to give a red crystalline solid, 65 mg (65%): MP 271~272°C; NMR Table 3; IR (CHCl₃) cm⁻¹ 3350, 2945, 1740, 1655; MS calcd for $C_{22}H_{24}N_2O_6$, 412.164, observed 412.163.

3,7-Diacetoxymethyl-2,8-dimethoxy-4,6-dipropylpyrido[3,2-g]quinoline-5,10-dione (22)

To a solution of 5 (50 mg, 0.09 mmol) in acetic acid (6 ml) was added NaOH (30 mg, 0.75 mmol) and the resulting mixture was stirred at 100°C for 3 hours. After the reaction was complete according to TLC analysis, in a similar manner to the preparation of 5, the mixture was treated and purified to give a yellow crystalline solid, 42 mg (91%): MP 98~100°C; NMR Table 3; IR (CHCl₃) cm⁻¹ 2945, 1740, 1660, 1575; FD-MS m/z 499 (M⁺+1).

3,7-Diacetoxymethyl-4,6-dipropylpyrido[3,2-g]quinoline-2,5,8,10(1H,9H)-tetrone (23)

To a solution of 22 (42 mg, 0.09 mmol) in acetic acid (4 ml) was added conc H_2SO_4 (0.2 ml), and the resulting solution was heated at reflux for 3 hours. After the reaction was complete according to TLC analysis, in a similar manner to the preparation of 11, the mixture was treated and purified to give a red crystalline solid, 25 mg (63%): MP 165~168°C; NMR Table 3; IR (CHCl₃) cm⁻¹ 3350, 2945, 1740, 1665; MS calcd for $C_{24}H_{26}N_2O_8$, 470.169, observed 470.169.

3-Ethoxymethyl-7-methyl-4,6-dipropylpyrido[3,2-g]quinoline-2,5,8,10(1H,9H)-tetrone (24)

A solution of 4 (320 mg, 0.72 mmol) in 30% H₂SO₄ - EtOH (120 ml) was heated at reflux for 10 hours. After the reaction was complete according to TLC analysis, in a similar manner to the preparation of 5, the mixture was treated and purified to give a red crystalline solid, 100 mg (35%): MP 286~288°C; NMR Table 3; IR (CHCl₂) cm⁻¹ 2975, 1670, 1630; MS calcd for C₂₂H₂₈N₂O₅, 398.184, observed 398.183.

3,7-Diethoxymethyl-4,6-dipropylpyrido[3,2-g]quinoline-2,5,8,10(1H,9H)-tetrone (25)

To a solution of 5 (52 mg, 0.09 mmol) in 30% H₂SO₄ - EtOH (8 ml) was heated at reflux for 10 hours. After the reaction was complete according to TLC analysis, in a similar manner to the preparation of 5, the mixture was treated and purified to give a red crystalline solid, 13 mg (32%): MP 233~235°C; NMR Table 3; IR (CHCl₃) cm⁻¹ 3350, 2980, 1655, 1630; MS calcd for C₂₄H₃₀N₂O₆, 442.211, observed 442.211.

2,8-Dimethoxy-3,7-dimorpholinomethyl-4,6-dipropylpyrido[3,2-g]quinoline-5,10-dione (26)

A solution of 5 (52 mg, 0.09 mmol) in morpholine (2 ml, 22.9 mmol) was stirred for 2 hours at room temperature. The mixture was concentrated to dryness *in vacuo* and to the residue was added 1 N Na₂CO₃ (10 ml). After extracting with CHCl₃, the organic phase was dried (Na₂SO₄) and the solvent removed *in vacuo*. The resulting crude product was purified by column chromatography on silica gel, eluting with CHCl₃ - MeOH (40:1). A yellow crystalline solid was obtained, 33.3 mg (64%): MP 94~95°C; NMR Table 3; IR (CHCl₃) cm⁻¹ 2975, 1700, 1670, 1590; MS calcd for $C_{30}H_{40}N_4O_6$, 552.295, observed 552.293.

3,7-Dimorpholinomethyl-4,6-dipropylpyrido[3,2-g]quinoline-2,5,8,10(1H,9H)-tetrone (27)

A solution of 26 (33.3 mg, 0.06 mmol) in 30% H₂SO₄ - EtOH (30 ml) was stirred at 100°C for 1.5 hours. After the reaction was complete according to TLC analysis, in a similar manner to the preparation of 10, the mixture was treated and purified to give a red crystalline solid, 22.1 mg (67%): MP 210~212°C; NMR Table 3; IR (CHCl₃) cm⁻¹ 2975, 1660; FD-MS m/z 525 (M⁺+1).

Antimicrobial Activity and Reversal Test with TdR

MIC against *E. faecium* IFO 3181 was assayed by agar dilution method with Folic Acid Assay Medium "Nissui" containing 1.0 ng/ml of pteroic acid at 37°C.²⁾ Reversal of antimicrobial activity with TdR was tested by conventional counter diffusion method. A compound was dissolved in DMSO at the final concentration of 0.1 μ g/ml. The solution, 50 μ l, was applied to a sterile paper disk (i.d. 8 mm) and the dried disk was placed onto the medium.

HeLa Cell Culture

A culture of HeLa cells was grown and maintained in EAGLE's minimum essential medium supplemented with 5% calf serum, benzylpenicillin (100 U/ml) and streptomycin (100 μ g/ml) as monolayer culture. Logarithmic phase cells were harvested by treating with trypsin (0.05%) and EDTA (0.01%) in calcium and magnesium-free phosphate buffered saline solution. After washing with the growth medium described above, cells were incubated in wells of 96-well flat bottom microplates (Corning cell wells). Each well contained 0.1 ml of the fresh growth medium supplemented with the compounds and 5×10^3 cells. The compounds were dissolved in DMSO and added to the medium at the final concentration of 1% of DMSO. The control well contained DMSO at the same rate. The cells were incubated at 37°C in water-saturated atmosphere of 5% CO₂ in air. After incubation for 4 days, the cell growth was observed.

Assay of TMP Synthase

The enzyme preparation was obtained according to the method described by ROBERTS⁷ with some modifications. The assay of TMP synthase from Ehrlich ascites carcinoma was performed as described by CALVERT *et al.*⁸ with some modifications described previously.

Antitumor Activity

 CDF_1 mice were inoculated ip on day-0 with Meth-A fibrosarcoma (1×10⁹ cells/mouse). The tumor had been maintained by ip transfer into BALB/c mice. Beginning 24 hours after tumor cell inoculation, the compounds were administered ip daily for four consecutive days. Antitumor activity was evaluated by the increased life span in the treated groups to that in the control group (T/C).

Acknowledgment

This work was supported in part by fund from the Japan Keirin Association. The authors wish to thank Sapporo Breweries Ltd., for supply of diazaquinomycin A and for evaluation of *in vivo* antitumor activity.

References

- ÖMURA, S.; Y. IWAI, K. HINOTOZAWA, H. TANAKA, Y. TAKAHASHI & A. NAKAGAWA: OM-704 A, a new antibiotic active against Gram-positive bacteria produced by *Streptomyces* sp. J. Antibiotics 35: 1425~ 1429, 1982
- ÖMURA, S.; M. MURATA, K. KIMURA, S. MATSUKURA, T. NISHIHARA & H. TANAKA: Screening for new antifolates of microbial origin and a new antifolate AM-8402. J. Antibiotics 38: 1016~1024, 1985
- MURATA, M.; T. MIYASAKA, H. TANAKA & S. ÖMURA: Diazaquinomycin A, a new antifolate antibiotic, inhibits thymidylate synthase. J. Antibiotics 38: 1025~1033, 1985
- ÓMURA, S.; A. NAKAGAWA, H. AOYAMA, K. HINOTOZAWA & H. SANO: The structures of diazaquinomycins A and B, new antibiotic metabolites. Tetrahedron Lett. 24: 3643~3646, 1983
- ANDREADES, S. & E. W. ZAHNOW: Anodic cyanations of aromatic compounds. J. Am. Chem. Soc. 91: 4181~4190, 1969
- 6) SIMCHEN, G. & H. KOBLER: Synthesis of nitriles with tetraalkylammonium cyanide. Synthesis 1975: 605~607, 1975
- 7) ROBERTS, D.: An isotopic assay for thymidylate synthetase. Biochemistry 5: 3546~3548, 1966
- CALVERT, A. H.; T. R. JONES, P. J. DADY, B. GRAZELAKOWSKA-SZTABERT, R. M. PAINE, G. A. TAYLOR & K. R. HARRAP: Quinazoline antifolates with dual biochemical loci of action. Biochemical and biological studies directed towards overcoming methotrexate resistance. Eur. J. Cancer 16: 713 ~ 722, 1980